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ANALYSIS OF SEISMIC DEMAND IN DIFFERENT STRUCTURAL MEMBERS
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ABSTRACT

In this paper, a global limit state function for load-carrying capacity of structural system is firstly set up, in which the
margin of safety is the difference between the limit base shear of structural system and the total horizontal seismic action.
To probabilistically assess the global seismic capacity of structure, a new point estimation method (PEM) for analyzing
statistical moments of complex random function is put forward, and then it is combined with deterministic finite element
analysis to produce the so-called “random pushover analysis (RPA)”. On the basis of the above new methodologies, a semi-
analytical approach which integrates the improved point estimation method, pushover analysis and first order reliability
method (FORM) is developed to analyze the nonlinear seismic reliability of structure as a global system. By applying the
proposed approach in

R.C. frame structure, the changing rules of the global seismic reliability of the structure with the coefficient of variation of
the total seismic action and correlation coefficient of storey-level seismic forces are derived. It is demonstrated by a
numerical example that the newly developed method in this paper is simple, practical and efficient compared with MCS,
and that it has the same accuracy as MCS.

KEYWORDS: Global Reliability, Seismic Reliability, Random Pushover Analysis (RPA), Point Estimation Method
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1. INTODUCTION

As a conventional method in structural system reliability theory (Moses, 1982), the failure mode approach (FMA) is
difficult to apply in civil engineering practice, since it has many disadvantages: First, the constitutive relations of materials
are assumed to be perfect rigid-plastic, however, this is not the real case of many civil engineering materials, such as
concrete, structural steel, soil, etc.; Second, it is hardly to identify the significant failure modes and determine their
corresponding failure mode equations of large-scale and complex structures, because the number of possible failure modes
of realistic complexity can be extremely large; Third, the correlation between failure modes is another important problem
not easy to deal with; Forth, the overall failure probability of structural systems cannot be evaluated accurately even though
the dominant failure modes and limit state equations are known a prior.

On the other hand, a new trend in which structural systems reliability is approximately calculated by using global limit
states based on nonlinear structural analysis techniques recently has been increasingly of interest in many different
communities. This novel approach encompass the following items: (1) the integrated nonlinear analysis methods of
structural systems considering real constitutive relations of materials, e.g., first order inelastic analysis, second order
inelastic analysis, etc., are utilized to search for the dominant modes of failure;

(2) the statistics of structural global load-carrying capacity are obtained by Monte Carlo simulations; (3) the probability
density function (PDF) of the global load-carrying capacity is fitted by its first few moments; (4) a global limit state
equation is set up, which comprises the global load-carrying capacity and structural load effects; (5) the classic structural
component reliability theory, such as first order reliability method (FORM), is applied in the global limit state equation, the
system reliability is then obtained approximately. This approach as two advantages: first, it can directly bypass the
difficulties in searching the significant modes of failure in FMA; second, it can consider the real constitutive relations of
structural materials. Therefore, it is a practical and efficient approximate method to solve the systems reliability problems
of structures. In this paper, we call this approach as global reliability theory of structures.

To the author’s knowledge, Gorman and Moses (1979) perhaps are the first researchers who presented the idea of directly
computing the system reliability by structural system resistance. Grigoriu (1983) proposed a control variable approach to
approximate the reliability of complex problems from estimators developed for the distribution of the control variable.
Nowak and Zhou (1988, 1990) developed a numerical integration method to calculate the first few moments of complex
random function, and then applied the approach in system reliability of highway bridges. Sigursdon et al. (1994) proposed a
probabilistic collapse analysis method to assess the system reliability of jacket platforms. Zhao and Ono (1998) developed a
failure mode independent performance function using load factor obtained by limit analysis, and then used response surface
approach to approximate the performance function and FORM to evaluate the system failure probability of ductile frames.
Onoufriou and Forbes (2001) reviewed and critically examined the recent developments in system reliability methods for
fixed steel offshore platforms. Moreover, they paid special attentions to pushover analysis, simplified models and
“component-based approach”. Ou et al. (2001) developed a probabilistic pushover analysis to approximately evaluate the
system reliability of buildings by randomizing both the capacity spectrum and demand spectrum. Ou et al. (2003) also
established a global limit state function considering the limit base shear of the whole structure based on limit analysis to
evaluate the system reliability of existing fixed jacket platforms. Li and Cheng (2004) employed pushover analysis together
with Monte Carlo simulation to check the probability distribution types that the global resistance of steel and R.C. frames
satisfies with K-S testing. Li et al. (2002, 2004, 2006) presented a reliability-based integrated design (RID) methodology of
steel frames based on nonlinear structural analysis, and gave a system-level RID format like as the LRFD formulations of
structural members to directly checks the structural system limit states and the corresponding system reliability. To
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compute the system reliability, they proposed a semi-analytical simulation method to assess the reliability of structural
systems, which combines variance-reduction techniques including systematic sampling and antithetic variates simulations
to obtain the moments of system resistance, the procedure of fitting the PDF of system resistance by exponential
polynomial method (EPM), and first order reliability method (FORM). They have succeeded in applying their methodology
in advanced design of steel portal frames with tapered members in industrial buildings and plane steel frames in high-rise
buildings.

The theory of global reliability provides a practical and operational means of moving from member design level toward
system design level for reliability-based probability design of structures, and bridges the gap between the two design levels.
Moreover, the main ideas of this theory are consistent with those of performance-based design theory now prevailing in the
community of earthquake engineering. Therefore, it has a broader prospect of applications. However, the research on global
reliability theory of structures is still insufficient, and has not been paid much attention to. Furthermore, there is a little
study on the global seismic reliability of structural systems, and nearly all the existing research employed Monte Carlo
simulation to get the moments of system resistance. Since the probability of failure of structures due to strong earthquakes
is usually very small, the number of nonlinear finite element analysis required by MCS is usually around 10°-10’, and so
the computational cost may be prohibitively large.

In this paper, a global limit state function for global seismic reliability of structures is provided, which is the difference of
the limit base shear of structural system minus the total horizontal seismic action. A new semi-analytical approach combing
point estimation method (PEM), pushover analysis with FORM is developed for analyzing the global seismic reliability of
structures. The developed methodology is applied in R.C. frame structures considering the nonlinear effects. The applied
method is also compared with MCS. A numerical example demonstrates that the approach put forward by this paper can
significantly reduce the number of finite element simulations, and has the same accuracy as that of MCS.

2. GLOBAL LOAD-CARRYING CAPACITY LIMIT STATE FUNCTION OF STRUCTURAL SYSTEM AND
A NEW SEMI-ANALYTICAL METHOD FOR SEISMIC RELIABILITY ANALYSIS

Global Load-Carrying Capacity Limit State Function of Structural Systems
In Chinese seismic design code of buildings (GB50011-2001), the base shear method is a prevailing approach to obtain the
seismic action for low to medium-rise buildings. In this paper, we take the limit base shear of structure as the global seismic
capacity of structural system, and take the total horizontal seismic action as the seismic demand of structures. Based on
these considerations, we propose the following global seismic capacity limit state function for structural systems:

9(Vs.FE) O Vs OFE (2.1)

where Vs = limit base shear of structures, Fg = the total horizontal seismic action of structures in the base. They are all
random variables, so we can use static reliability theory to conduct the analysis of seismic reliability, which is a dynamic
reliability problem in nature.
The formulation of Eq. (2.1) is the same as the performance function of structural members in the format, in other words,
the limit base shear Vs and the total horizontal seismic action Fg correspond with the resistance and load effect of structural
members, respectively. Therefore, the classical component reliability methods such as FORM and SORM (Ditlevsen and
Madsen, 1996) can be used to approximately compute the system reliability of structures.
There is another advantage in applying Eq. (2.1) in seismic reliability analysis: the real constitutive relations of structural
materials and nonlinear effects of structural systems can be considered through the limit base shear Vs. As such, although
Eqg. (2.1) is linear in the format, the approach based on this formulation is a nonlinear reliability analysis method in nature.
There are two causes for Eq. (2.1) just to include one load effect, i.e. seismic action. One reason is that both the mean value
and the variability in the seismic intensity are much larger than those of the live loads and wind load, so the randomness in
the live loads and wind load should not be considered, and their characteristic values are taken, when analyzing the seismic
reliability of structures. Therefore, only one single random load, i.e., seismic action, is included in Eq. (2.1). The second
reason is that, when the total horizontal seismic action is computed, the equivalent total gravity load has included the
combination effects of dead loads, live loads and wind load, so the total horizontal seismic action Fg is equivalent to the
comprehensive load effect.

The Limit Base Shear of Structures

The limit base shear of structures Vs depends on not only the limit load-carrying capacity of structural members, but also
the constitutive relations of materials, the correlation relationships among structural members, the correlation relationships
between member resistance and loads, load path, system redundancy, structural types, loading cases of structures, etc. Due
to the complexity of the problem, the traditional limit load analysis method is not suitable to the limit base shear analysis of
structures. Instead, we take pushover analysis as the basic tool to evaluate the limit base shear of structures. Pushover
analysis is an incremental static elastoplastic analysis method under the increasing monotonic load. The advantage of
applying pushover analysis in system reliability evaluation is that it can trace the developing sequences of plastic hinges
and so identify the significant failure modes. Actually, it is an extension of the incremental load approach proposed by
Moses (1982) in system reliability theory of structures.

Much research has proven that the global load-carrying capacity of structures can be approximately modeled by log-normal
distribution. Therefore, in this paper, the limit base shear of structures is also assumed to satisfy log-normal distribution:
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in which 0 " and O g ore mean value and COV of Vg respectively.
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Equivalent Static Random Seismic Action
Based on response spectrum of single-degree-of-freedom (SDOF) oscillator, the equivalent static random seismic action
can be described as
A
FOOGDO MO(T,0)GD 25)
E
where, G is the equivalent total gravity load, D is an appendin8 factor considering the modeling uncertainty

A
from, 00O MO(T,0) isthe earthquake effect coefficient, g is the gravity acceleration, Ap is the peak

g9
ground acceleration (PGA), O(T,0) is the dynamic amplification factor, in which T and O are the vibration

period and damping ratio of the oscillator respectively.
Ou et al. (1994) has proven that the random seismic action under deterministic earthquake intensity satisfies type | extreme
value distribution. When the seismic intensity | takes J, the CDF of Fgis

Fe(f[1'0J) DexpoOexp[00(f Du)lo (2.6)
where the distribution parameters take the forms of
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where 0 g and V 5 are the mean value and COV of Fg under the jth intensity respectively. Based on the
research of Ou et al. (1994, 1995), 0 00.75Fjk ,inwhich  Fj s the characteristic value of the horizontal
3 K
seismic action under the jth intensity, VFJ 0 0.73. Put the above results in Egs. (2.7) and (2.8), we can obtain

the final results: 0 0 2.34/Fjk, uO05FK.

A New Semi-Analytical Method for Global Seismic Reliability Analysis of Structures
From the above statements we can come to the conclusion that the central problem of applying Eq. (2.1) in analysis of
global seismic reliability is how to get the moment information of limit base shear Vs, since the probability model and
distribution parameters of random seismic action Fg have been certain. Most of the available research generally makes use
of Monte Carlo simulation combined with pushover analysis to obtain the samples and then the estimators of statistical
moments. To reduce the variance of simulation, many techniques have been introduced, such as importance sampling,
systematic sampling, antithetic variates, etc. Unfortunately, the computation cost of these random simulation approaches
based on MCS is still extremely large. In next section, we will propose a random pushover analysis approach based on
point estimation method (PEM), which can significantly reduce the number of nonlinear finite element analysis while
keeping the same accuracy as MCS.
After obtaining the statistical moments of Vs by numerical analysis techniques, the approximate analytical method such as
FORM/SORM can then be applied to solve Eq. (2.1). For this purpose, we suggest herein a new semi-analytical method as
follows:
(1) Obtaining the statistical moments of limit base shear Vs by using random pushover analysis based on point estimation
method;
(2) Fitting the PDF of Vs according to its statistical moments. If the probability model of Vs can be decided a prior, then
this step can be omitted;
(3) Using FORM and/or SORM to solve Eg. (2.1).

3. RANDOM PUSHOVER ANALYSIS BASED ON POINT ESTIMATION METHOD AND ITS
APPLICATIONS IN PROBABILISTIC ANALYSIS OF STRUCTURAL LIMIT BASESHEAR

Characteristics and Difficulties of Probabilistic Analysis of Structural Limit Base shear
Since there are randomness and uncertainties in many factors influencing structural limit base shear Vs, we should make use
of probability theory to analyze and compute the statistical moments of Vs. Put all factors influencing Vs together into a

basic random vector X 0 [ X1, X 2,,..., Xp ]T, then Vs can be generally denoted as
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an implicit and nonlinear function of X: Vs 0 h(X) 0 h(X, X210 X ) (3.1)
There exist the following characteristics and difficulties in probabilistic analysis of limit base shear of structures:

(1) Multiple scales. The factors influencing Vs can be classified as five scales, i.e. material scale, section scale, member
scale, sub-structure scale and structural system scale. The random information propagates across the above scales from
bottom to top, so as to make the analysis of uncertainty propagation very difficult. (2) Nonlinearity. The limit base shear of
structures is a nonlinear function of the above influencing factors in nature, especially in the case that the structure goes
into the severe damage or even collapse. (3) Correlation. There may be correlating relations to some degree between the
factors in the same scale, or between the factors across the different scales. (4) Highly implicitness. The limit base shear is
usually determined by numerical analysis techniques, such as FEM. Therefore, the limit base shear is a highly implicit
function of basic random variables, generally takes the form of a black box.

Due to the above difficulties, the conventional methods for analysis of uncertainty propagation, such as mean-value first
order second moment (MVFOSM) method and Monte Carlo simulation, have the disadvantages of low accuracy or too
much computational cost. Therefore, we should look for some approaches whose accuracy and efficiency can all be
accepted by engineering community, among which the point estimation method is such an approach.

Point Estimation Method Based on Nataf transformation

Point estimation method (PEM) was proposed by Rosenblueth (1975) to approximate the lower-order moments of functions
of random variables. It is a special case of numerical quadrature based on orthogonal polynomials. For normal variables, it
corresponds to Gauss-Hermite quadrature. While the point estimate method is popular in practice, it has many detractors.
Numerous modifications or improvements have been made for the original PEM. However, the early developments of PEM
are all undertaken in the original space of random variables, requiring the higher order moments of random variables
without considering the distribution information. To overcome these shortcomings, Zhao and Ono (2000) introduced a hew
point estimation method based on Rosenblatt transformation in which the numerical quadrature is completed in standard
normal space. Unfortunately, Rosenblatt transformation cannot deal with the case of random variables with given marginal
distributions and correlation information. In this paper, we introduce Nataf transformation (Liu and Der Kiureghian, 1986)
into Zhao-Ono point estimation method.

The forward Nataf transformation TN can be denoted by

01 .01
TNU oL 0(1) [FX(x)] (3.2)
where, X and u are the realizations of n dependent non-normal random variables X and independent
standard normal random variables U , respectively; q,D 1( represents the column vector composed of all
)
inverse functions of standard normal random variables; Fx (X) is the column vector comprised of CDFs of
random variables ~ Xj (i 0 1,...,n); Lo is the lower triangle matrix of Choleski decomposition of correlation
coefficients matrix Rq of dependent normal random vector YO ()], ie. % _ LT  the
T b L
relationships between the elements Up, of Rp and the elements Uj of R, the correlation coefficients
matrix of X , are J J
Do,ij U Fij Uij (3.3)
where, the coefficient !:i is function of correlation coefficient _D ' and marginal distributions Fx (xj) and
Fx (xj) of random variables X; and Xj.Ingeneral, Fij O 1. Liu and Der Kiureghian (1986) gave the
pracj:tical formula for computing coefficient Fi corresponding to different probability distributions.
]
The inverse Nataf transformation TNm can be %elnoted bym
TN X0 I)Z( [(I)(I(_) u)] (3.4)
where, ,:El( represents  the column vector composed of all inverse functions of random

1)
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variables Xj (i 0 1,...,n);  ®(0) denotes the column vector comprised of all CDFs of standard normal random

variables.
The computation of the first two moments of random function space by h(X) is undertaken in the standard normal
using the inverse Nataf transformation,
= h(9) fx (x)dx = Eﬁu)/Jr: ujdu (3.5)
%o m(x) T ()dx O E& (u)du (3.5h)
h o 4 - l Nz
X

where, O, and O |, are mean value and standard deviation of random variable h respectively; fx (X) isthe
joint PDF of random vector X ; On(U) s the joint PDF of n-dimension standard normal random variables.

For single-variable function  h(X) : Nataf transformation reduces to iso-probability

transformation x O F Dxl[D(u)], and then Eq. (3.5) can be approximated by using Gauss-Hermite numerical quadrature in
standard normal space:

m
=Y Pih{ ACORE (3.6a)

jjio1

m
[
220" el e e et (3.6b)
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uj(j 01,...,m) Juk!
where, are estimation points; Pj are corresponding weights; m is the number of

estimation points.

The abscissas X j and weights Wj of Gauss-Hermite quadrature with weight function exp(Du2 ) are listed in

Table 3.1.
Table 3.1 Abscissas and weights for Gauss-Hermite integration
Order (m) Abscissas ( Xj ) Weights ( wj ) Order (m) Abscissas ( X ) Weights (Wj )
1 0 1.7724538509 0 0.9453087205
2 +0.707106781 0.8862269255 5 +2.020182871 0.0199532421
3 0 1.1816359006 +0.958572465 0.3936193232
+1.224744871 0.2954089752 +2.350604974 0.0045300100
4 +1.650680124 0.0813128354 6 +1.335849074 0.1570673203
+0.524647623 0.8049140900 +0.436077412 0.7246295952
0 0.8102646176 +2.930637420 0.0001996041
7 +2.651961357 0.0009717812 8 +1.981656757 0.0170779830
+1.673551629 0.0545155828 +1.157193712 0.2078023258
+0.816287883 0.4256072526 +0.381186990 0.6611470126
The estimating points uj and weights  Pj in EQ. (3.6) can be obtained according to Table 3.1:
Wi
wo 2, PO ) 3.7)
| I B
W T

For a function of random variables h(X) , it is approximated by a non-product function proposed by Zhao and Ono (2000):
n

h(X) 0 hO(X) 0. (Hj 0 HR) 0 Hy (3.8)
in which, 101
Hy O h(w) 0 h(Dg,..., Oj ..., Op) (3.9)
www.iejrd.com S141113
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where p represents the vector in which all the random variables take their mean values; uj represents the
vector in which only uj is a random variable, while other variables take the corresponding transformed values
of their mean values in standard normal space; up j(J 0 isthe jth element of the transformed vector up
i)

who corresponds the vector p in standard normal space u ; H (u) Oh[T ()] the formulation of random

function h(x) in standard normal space based on Nataf transformation.

Note that we have introduced Nataf transformation into Eq. (3.8), so it is different from that proposed by Zhao and Ono,
although their forms are the same.

Based on Eg. (3.8), the first two moment of multi-variable random function h(X) can be estimated by

n

(RO p (GO HE) D HY (3.11a)

i0l
2 y 2
ofr Ea i (3.11b)
here i and Oj T o .

where are mean value and standard deviation of Hj by using point-estimation of single-variable
function.

Application of Point-Estimation Based Random Pushover Analysis in Statistical Moments Computation of Structural
Limit Base shear

The nature of point estimation method is that it is a kind of deterministic sampling in standard normal space according to
Table 3.1 and Eg. (3.7), whose total sampling number is m O n, in which m is the order of numerical quadrature, and n is
the number of basic random variables. Compared with the huge sampling number of Monte Carlo simulation, obviously
the sampling number of point estimation method reduces dramatically. On the other hand, from the viewpoints of
experimental design, point estimation method belongs to a kind of deterministic experimental design.

Since point estimation method makes use of deterministic sampling or experimental design techniques, we can combine
this method with deterministic finite element analysis, herein the pushover analysis, to compute the statistical moments of
limit base shear of structures. We call this combination of pushover analysis with point estimation method as “random
pushover analysis (RPA)”, the detailed implementation steps are as follows:

(1) Building the finite element model of structure;

(2) Determining the probability distribution types and their distribution parameters of basic random variables

X that influence the limit base shear Vg of structures;

(3) Generating structural samples by sampling of the basic random variables X according to Table 3.1 and Eq. (3.7);
(4) Conducting pushover analysis for each structural sample to derive its base shear-top displacement curve, from which
the limit base shear is obtained;

(5) Computing the statistical moments of limit base shear Vg according to Egs. (3.8) to (3.11).

4. Application of the methodology to a R.C. frame building

Basic Data of the Structure
The analyzed structure shown in Figure 1 is a three-bay and six-storey reinforced concrete frame building, the sizes of
beams and columns are listed in Table 4.1. The uniformly distributed load on the top floor is 16.6 KN/m, the loads on other
floors are all 20.06 KN/m.

Probability Models and Statistical Parameters of Basic Random Variables
According to the research of Ou et al. (1994, 1995), the random horizontal seismic forces acting on structural floors
computed by base shear method all satisfy Type-I extreme value distribution. The statistical parameters of storey-level
seismic forces according to Egs. (2.7) and (2.8) are listed in Table 4.2. Ou et al. (1995) assumed that
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the storey-level seismic forces were perfect correlation. In order to investigate the effects of the variation of total horizontal
seismic action and correlation relation of storey-level seismic forces on the limit base shear of structures, this paper
assumes the variation of total horizontal seismic action changes from 0.1 to 1.0; while the correlation coefficient of storey-
level seismic forces changes from 0 to 0.9. The randomness considered in structural resistance includes yielding strength f,
of concrete, yielding strength f,, elasticity modulus E and the second stiffness factor O of steel, their probability models and
distribution parameters are also listed in Table 4.2.

16.6KN/m
v ¥ _¥

L 2K 7 L 4
i ]
20.06 KN/m 36m
20.06KN/m
3.6m
v viv viv ¥ V|
- . ' ]
20.06KN/m
3.6m
v viv viv V¥ V|
- . - |
20.06KN/m 3.6m
20.06KN/m
3.6m
F—» v *i* v '+ v +. -
3.6m
i ol - Y
| 6.6m | _27m j__ 6.6m |
) I — 1

Figure 1 Three-bay and six-storey R.C. frame

Table 4.1 Sizes of structural members

. . Strength Grade | Steel Grade | Steel Grade
Members Height (mm) | Width (mm) of Concrete of rebar of hoops
Interior Columns 500 500 C30 HRB335 HPB235
Exterior Columns 500 500 C30 HRB335 HPB235
Main Beams 600 300 C30 HRB335 HPB235
Side Beams 500 | 200 ~ C30 "HRB335 | HPB235
I'aple 5.2 SIatistics and probability Types of DasIC random vartables
RVs Mean value Std cov Types Corre_la_tlon
coefficient
f, (N/mm?) 14.3 2.86 0.2
f, (N/mm°) 363 72.6 0.2 | Log-normal 0.3
E (N/mm?) 2x10° 0.4x10° 0.2
o 0.05 0.001 0.2 normal
F1 (KN) 33.513 3.351~33513 | 0.1~1.0
F, (KN) 58.379 5.838~58.379 | 0.1~1.0
Fs (KN) 80.345 8.035-80.345 | 0.1~1.0 | Typel 0.0~0.9
Fs (KN) 98.292 0.820-98292 | 0.1-10 | largest
Fs (KN) 111.170 11.117~111.170 | 0.1~1.0
Fs (KN) 91.721 9.172~91.721 | 0.1~1.0

Probabilistic Analysis of Limit Base shear of the Structure

By applying the random pushover analysis based on Nataf transformation proposed in this paper in probabilistic analysis of
limit base shear of the R.C. frame, the changing rules of mean value and standard deviation of limit base shear with COV of
total horizontal seismic action and correlation coefficient of storey-level seismic forces, as shown in Figures 2 and 3.

www.iejrd.com S141113
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Figure 2 Changing of mean value and standard deviation of limit base shear with COV of seismic action
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Figure 3 Changing of mean value and standard deviation of limit base shear with correlation coefficient of storey-
level seismic forces

From Figure 2 it is evident that the mean value and standard deviation of limit base shear tend to be large with the
increasing of COV of total horizontal seismic action. This result is predictable since the pushover results of structures
depend on the loading cases and lateral load patterns. Obviously, the more is the randomness in the total seismic action, the
more are the statistics of limit base shear.

From Figure 3 we can see that the mean value and standard deviation of limit base shear do not necessarily increase with
the correlation coefficient of storey-level seismic forces. When correlation coefficient 0 0 0.6, the

mean value of limit base shear becomes smaller; while when 0 0 0.7, the standard deviation becomes smaller.
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If we assume the storey-level seismic forces are all perfect correlated, then the conservative results will be obtained. In
other words, the storey-level seismic forces are not perfect correlated in nature, since the combinations of dead load, live
load and wind loads have been considered when calculating the characteristic value of total seismic actions, thus it lead to
the partial correlation between storey-level seismic forces.

Seismic Reliability of Global Load-Carrying Capacity of the Structure
We herein only analyze the seismic reliability of structures under major earthquakes by means of first order reliability
method (FORM) based on the established system-level limit state. The first two moments of the total horizontal seismic
action according to base shear method and Egs. (2.7) and (2.8) are listed in Table 4.3.

Table 4.3 Statistics of total horizontal seismic action
Characteristic value (KN) Mean value (KN) Std (KN) cov

631.224 473.418 236.709 0.5

By using the semi-analytical method proposed in this paper, the changing rules of the reliability index of global load-
carrying capacity of the structure with the COV of total seismic actions and the correlation coefficient of storey-level
seismic forces, as shown in Tables 4.4 and 4.5 as well as Figures 4 and 5, are obtained. To investigate the accuracy and
efficiency of the proposed method, Monte Carlo simulations are also conducted

with simulation number (1 108 The results of MCS are also listed in the corresponding tables and figures.

Table 4.4 Results of global seismic reliability index considering the variations of total seismic action

OF 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
UFOR 2.8645 | 19306 | 1.5394 | 1.3209 | 1.1716 | 1.0667 | 0.9836 | 0.9248 | 0.8537 | 0.8220
M

Omcs 2.8699 | 1.9335 | 1.5380 | 1.3216 | 1.1729 | 1.0684 | 0.9874 | 0.9300 | 0.8572 | 0.8280

Table 4.5 Results of global seismic reliability index considering the correlation of storey-level seismic forces

OF 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
UFOR 0.9032 | 0.9695 | 1.0161 | 1.0492 | 1.0704 | 1.0821 | 1.0838 | 1.0741 | 1.0447 | 0.9772
M

omcs 0.9003 | 0.9706 | 1.0189 | 1.0493 | 1.0710 | 1.0844 | 1.0824 | 1.0756 | 1.0453 | 0.9774
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From Tables 4.4 and 4.5, it is evident that the results by using the method proposed in this paper has nearly the same
accuracy as that of MCS, while the number of nonlinear finite element analysis in our method is only 50. It is shown
from Table 4.4 and Figure 4 that the global reliability index tend to become smaller with the

5. CONCLUSIONS

This paper built up a global load-carrying limit state function based on limit base shear, put forward a new semi-analytical
method to analyze the nonlinear global seismic reliability of structures, which comprises point estimation method, pushover
analysis and FORM. By applying the proposed methodology in reinforced concrete frame buildings, some changing rules
of global seismic reliability of the structure with COV of total seismic action and correlation coefficient of storey-level
seismic forces were obtained. Through the comprehensive study in this paper, some conclusions are derived as follows:

(1) The method of system reliability analysis based on global load-carrying capacity is simple, practical and efficient. On
the one hand, this method can overcome many difficulties of conventional system reliability theory; on the other hand, it
can be linked with the current design codes so that the static reliability method can solve the difficult dynamic seismic
reliability problems.

(2) Semi-analytical method is a compound approach which combines numerical simulation or integration methods,
deterministic finite element analysis and approximate analytical reliability methods such as FORM/SORM. This method is
a practical and efficient approach to conduct the seismic reliability analysis of large-scale and complex structures. The
practice shows that this method has the same accuracy as MCS.

(3) Random pushover analysis is a good alternative for probabilistic seismic capacity analysis (PSCA) of structures.
Meanwhile, it is also an efficient tool of uncertainty propagation structural system.

(4) The variation of total seismic action and the correlation between the storey-level seismic forces have great effect on the
limit base shear and the global seismic reliability of structures.

(5) The methodology proposed in this paper can be extended to probabilistic seismic performance assessment and design

of structures based on global reliability.

6. ACKNOWLEDGEMENTS

The support of National Science Foundation of China through projects (Grant No. 90715021, 50678057, 50108005) is
greatly appreciated. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the National Science Foundation of China.

REFERENCES

Ditlevsen, O. and Madsen, H.O. (1996). Structural reliability methods. John Wiley & Sons, New York, NY. Gorman, M.R.
and Moses, F. (1979). Direct estimates of structural system reliability. Proceeding of ASCE the 7th Conference on
Electronic Computation, St. Louis, Missouri, Aug., 432-445.

Grigoriu, M. (1983). Approximate analysis of complex reliability problems. Structural Safety 1:4, 277-288. Krawinkler, H.
and Seneviratna, G.D.P.K. (1998). Pros and cons of a pushover analysis of seismic performance evaluation. Engineering
Structures 20:4-6: 452-464.

Li, G.and Cheng, G.-D. (2004). Performance-Based Seismic Design: Theory, Methods and Applications. Science Press,
Beijing.

Li, G.-Q. and Li, J.-J. (2002). A semi-analytical simulation method for reliability assessments of structural systems.
Reliability Engineering and System Safety 78:3, 275-281.




Vol.3

Fnternational Engineering Journal For Besearch & Bevelopment Issue 2

Li, G.-Q., Liu, Y.-S. and Zhao, X. (2006). Advanced Analysis of Steel Frames and System Reliability Based Design.
Building Industry Press of China, Beijing.
Li, J.-J. and Li, G.-Q. (2004). Reliability-based integrated design of steel portal frames with tapered members.

Structural Safety 26:2, 221-239.

Liu, P.L. and Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances.
Probabilistic Engineering Mechanics 1:2, 105-112.

Moses, F. (1982). System reliability developments in structural engineering. Structural Safety 1:1, 3-13. National Standard
of China P.R. (2001). Seismic Design Code of Buildings (GB50011-2001). Building Industry Press of China, Beijing.
Nowak, A.S. and Zhou, J.H. (1988). Integration formulas to evaluate functions of random variables. Structural Safety 5:4,
267-284.

Nowak, A.S. and Zhou, J.H. (1990). System reliability models for bridges. Structural Safety 7:2-4, 247-254. Onoufriou, T.
and Forbes, V.J. (2001). Developments in structural system reliability assessments of fixed steel offshore platforms.
Reliability Engineering and System Safety 71:2, 189-199.

Ou, J.-P., Duan, Y.-B. and Liu, H.-Y. (1994). Random seismic action and its statistics. Journal of Harbin Building
Engineering and Architecture 27:5, 1-10. (in Chinese).

Ou, J.-P. and Duan, Y.-B. (1995). Seismic reliability analysis and optimum design of high-rise building structures.
Earthquake Engineering and Engineering Vibration 15:1, 1-13. (in Chinese).

Ou, J.-P., Hou, G.-L. and Wu, B. (2001). Probabilistic pushover analysis and its applications in seismic reliability
evaluation of structural systems. China Building Structures Journal 22:6, 81-86. (in Chinese).

Ou, J.-P., Duan, Z.-D. and Xiao, Y.-Q. (2003). Safety Assessment of Platforms: Theory, Methods and Applications.
Science Press, Beijing. (in Chinese).

Rosenblueth, E. (1975). Point estimates for probability moments. Proceedings of the National Academy of Science 72:10,
3812-3814.

Sigursdon, G., Skjong, R., Skallerud, B., et al. (1994). Probabilistic collapse analysis of jackets. International Conference
on Offshore Mechanics and Arctic and Engineering, Houston.

Zhao,Y.G. and Ono, T. (1998). System reliability evaluation of ductile frame structures. ASCE Journal of Structural
Engineering 124:6, 678-685.

Zhao, Y.G. and Ono, T. (2000). New point estimates for probability moments. ASCE Journal of Engineering Mechanics
126:4, 433-436.




www.iejrd.com S141113




